Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nuclear electric quadrupole relaxation

Identifieur interne : 002407 ( Main/Exploration ); précédent : 002406; suivant : 002408

Nuclear electric quadrupole relaxation

Auteurs : I. P. Gerothanassis [Grèce] ; C. G. Tsanaktsidis [Grèce]

Source :

RBID : ISTEX:5A90D4330335E76B76C68532A4CD7A0A657990FA

English descriptors

Abstract

Nuclei with spin quantum number 1 ≥ 1 have an asymmetric charge distribution and thus possess an electric quadrupole moment eQ. The interaction of the electric quadrupole moment with the electric field gradient of the bonding electrons provides the dominant relaxation mechanism of the quadrupolar nuclei, which are approximately three‐quarters of the naturally occurring magnetic nuclei. This review summarizes the basic principles of nuclear electric quadrupolar relaxation. Particular emphasis is given to the effects of the magnitude of the quadrupole moment, the spin quantum number, the linewidth factor, the electric field gradient (which originates from charge density variations of the bonding electrons near the nucleus), and the effective correlation time for molecular tumbling. Relaxation outside the extreme narrowing condition for integer and half‐integer spins is examined and experimental examples are provided. Modulation of the electric field gradient due to time‐dependent intermolecular interactions and chemical exchange are discussed briefly, together with the effects of relaxation mechanisms other than quadrupolar. © 1996 John Wiley & Sons, Inc.

Url:
DOI: 10.1002/(SICI)1099-0534(1996)8:1<63::AID-CMR5>3.0.CO;2-N


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nuclear electric quadrupole relaxation</title>
<author>
<name sortKey="Gerothanassis, I P" sort="Gerothanassis, I P" uniqKey="Gerothanassis I" first="I. P." last="Gerothanassis">I. P. Gerothanassis</name>
</author>
<author>
<name sortKey="Tsanaktsidis, C G" sort="Tsanaktsidis, C G" uniqKey="Tsanaktsidis C" first="C. G." last="Tsanaktsidis">C. G. Tsanaktsidis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5A90D4330335E76B76C68532A4CD7A0A657990FA</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1002/(SICI)1099-0534(1996)8:1<63::AID-CMR5>3.0.CO;2-N</idno>
<idno type="url">https://api.istex.fr/document/5A90D4330335E76B76C68532A4CD7A0A657990FA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001860</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001860</idno>
<idno type="wicri:Area/Istex/Curation">001860</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C70</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C70</idno>
<idno type="wicri:doubleKey">1043-7347:1996:Gerothanassis I:nuclear:electric:quadrupole</idno>
<idno type="wicri:Area/Main/Merge">002890</idno>
<idno type="wicri:Area/Main/Curation">002407</idno>
<idno type="wicri:Area/Main/Exploration">002407</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Nuclear electric quadrupole relaxation</title>
<author>
<name sortKey="Gerothanassis, I P" sort="Gerothanassis, I P" uniqKey="Gerothanassis I" first="I. P." last="Gerothanassis">I. P. Gerothanassis</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR‐45110</wicri:regionArea>
<wicri:noRegion>Ioannina GR‐45110</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Correspondence address: Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR‐45110</wicri:regionArea>
<wicri:noRegion>Ioannina GR‐45110</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tsanaktsidis, C G" sort="Tsanaktsidis, C G" uniqKey="Tsanaktsidis C" first="C. G." last="Tsanaktsidis">C. G. Tsanaktsidis</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Grèce</country>
<wicri:regionArea>Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR‐45110</wicri:regionArea>
<wicri:noRegion>Ioannina GR‐45110</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Concepts in Magnetic Resonance</title>
<title level="j" type="alt">CONCEPTS IN MAGNETIC RESONANCE</title>
<idno type="ISSN">1043-7347</idno>
<idno type="eISSN">1099-0534</idno>
<imprint>
<biblScope unit="vol">8</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="63">63</biblScope>
<biblScope unit="page" to="74">74</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>John Wiley & Sons, Inc.</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1996">1996</date>
</imprint>
<idno type="ISSN">1043-7347</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1043-7347</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>American chemical society</term>
<term>Aqueous solution</term>
<term>Asymmetry parameter</term>
<term>Axial symmetry</term>
<term>Biological interest</term>
<term>Biological macromolecules</term>
<term>Biological systems</term>
<term>Broad component</term>
<term>Charge density variations</term>
<term>Chem</term>
<term>Chemical exchange</term>
<term>Chemical sciences</term>
<term>Chemical shift anisotropy</term>
<term>Correlation function</term>
<term>Correlation time</term>
<term>Correlation times</term>
<term>Debye relation</term>
<term>Different contributions</term>
<term>Dynamic frequency shifts</term>
<term>East anglia</term>
<term>Electric field</term>
<term>Electric field gradient</term>
<term>Electric quadrupole moment</term>
<term>Electronic shells</term>
<term>Field gradient</term>
<term>Field gradients</term>
<term>First degree</term>
<term>Frequency shifts</term>
<term>Gerothanassis</term>
<term>Intermolecular interactions</term>
<term>Ion</term>
<term>Linewidth</term>
<term>Linewidth factor</term>
<term>Linewidths</term>
<term>Longitudinal</term>
<term>Longitudinal relaxation</term>
<term>Magnetic interaction</term>
<term>Magnetic nuclei</term>
<term>Narrow component</term>
<term>Natural abundance</term>
<term>Nuclear quadrupolar</term>
<term>Nucleus</term>
<term>Oblate spheroid</term>
<term>Prolate spheroid</term>
<term>Quadrupolar</term>
<term>Quadrupolar energy</term>
<term>Quadrupolar interactions</term>
<term>Quadrupolar nuclei</term>
<term>Quadrupolar relaxation</term>
<term>Quadrupole</term>
<term>Quadrupole moment</term>
<term>Quadrupole relaxation</term>
<term>Quantum number</term>
<term>Relative areas</term>
<term>Relaxation</term>
<term>Relaxation parameters</term>
<term>Relaxation rates</term>
<term>Relaxation time</term>
<term>Relaxation times</term>
<term>Resonance spectroscopy</term>
<term>Sharp lines</term>
<term>Similar magnitudes</term>
<term>Simple ions</term>
<term>Slow motion limit</term>
<term>Solvent molecules</term>
<term>Transverse relaxation</term>
<term>Tsanaktsidis</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>American chemical society</term>
<term>Aqueous solution</term>
<term>Asymmetry parameter</term>
<term>Axial symmetry</term>
<term>Biological interest</term>
<term>Biological macromolecules</term>
<term>Biological systems</term>
<term>Broad component</term>
<term>Charge density variations</term>
<term>Chem</term>
<term>Chemical exchange</term>
<term>Chemical sciences</term>
<term>Chemical shift anisotropy</term>
<term>Correlation function</term>
<term>Correlation time</term>
<term>Correlation times</term>
<term>Debye relation</term>
<term>Different contributions</term>
<term>Dynamic frequency shifts</term>
<term>East anglia</term>
<term>Electric field</term>
<term>Electric field gradient</term>
<term>Electric quadrupole moment</term>
<term>Electronic shells</term>
<term>Field gradient</term>
<term>Field gradients</term>
<term>First degree</term>
<term>Frequency shifts</term>
<term>Gerothanassis</term>
<term>Intermolecular interactions</term>
<term>Ion</term>
<term>Linewidth</term>
<term>Linewidth factor</term>
<term>Linewidths</term>
<term>Longitudinal</term>
<term>Longitudinal relaxation</term>
<term>Magnetic interaction</term>
<term>Magnetic nuclei</term>
<term>Narrow component</term>
<term>Natural abundance</term>
<term>Nuclear quadrupolar</term>
<term>Nucleus</term>
<term>Oblate spheroid</term>
<term>Prolate spheroid</term>
<term>Quadrupolar</term>
<term>Quadrupolar energy</term>
<term>Quadrupolar interactions</term>
<term>Quadrupolar nuclei</term>
<term>Quadrupolar relaxation</term>
<term>Quadrupole</term>
<term>Quadrupole moment</term>
<term>Quadrupole relaxation</term>
<term>Quantum number</term>
<term>Relative areas</term>
<term>Relaxation</term>
<term>Relaxation parameters</term>
<term>Relaxation rates</term>
<term>Relaxation time</term>
<term>Relaxation times</term>
<term>Resonance spectroscopy</term>
<term>Sharp lines</term>
<term>Similar magnitudes</term>
<term>Simple ions</term>
<term>Slow motion limit</term>
<term>Solvent molecules</term>
<term>Transverse relaxation</term>
<term>Tsanaktsidis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Nuclei with spin quantum number 1 ≥ 1 have an asymmetric charge distribution and thus possess an electric quadrupole moment eQ. The interaction of the electric quadrupole moment with the electric field gradient of the bonding electrons provides the dominant relaxation mechanism of the quadrupolar nuclei, which are approximately three‐quarters of the naturally occurring magnetic nuclei. This review summarizes the basic principles of nuclear electric quadrupolar relaxation. Particular emphasis is given to the effects of the magnitude of the quadrupole moment, the spin quantum number, the linewidth factor, the electric field gradient (which originates from charge density variations of the bonding electrons near the nucleus), and the effective correlation time for molecular tumbling. Relaxation outside the extreme narrowing condition for integer and half‐integer spins is examined and experimental examples are provided. Modulation of the electric field gradient due to time‐dependent intermolecular interactions and chemical exchange are discussed briefly, together with the effects of relaxation mechanisms other than quadrupolar. © 1996 John Wiley & Sons, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Grèce</li>
</country>
</list>
<tree>
<country name="Grèce">
<noRegion>
<name sortKey="Gerothanassis, I P" sort="Gerothanassis, I P" uniqKey="Gerothanassis I" first="I. P." last="Gerothanassis">I. P. Gerothanassis</name>
</noRegion>
<name sortKey="Gerothanassis, I P" sort="Gerothanassis, I P" uniqKey="Gerothanassis I" first="I. P." last="Gerothanassis">I. P. Gerothanassis</name>
<name sortKey="Tsanaktsidis, C G" sort="Tsanaktsidis, C G" uniqKey="Tsanaktsidis C" first="C. G." last="Tsanaktsidis">C. G. Tsanaktsidis</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002407 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002407 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:5A90D4330335E76B76C68532A4CD7A0A657990FA
   |texte=   Nuclear electric quadrupole relaxation
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024